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Abstract. As part of a more general program of developing multiple-scale models of turbulence, Schi-

estel suggested a derivation of the homogeneous part of the dissipation rate transport equation. Schiestel's

approach is generalized to rotating turbulence. The resulting model reproduces the main features observed

in decaying rotating turbulence.
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1. Introduction. The dissipation rate transport equation continues to resist systematic derivation,

either from the governing equations or even from statistical closures. Much of the closure-based work is

summarized in [1]; more recent work is summarized in [2]. In many respects, the most successful derivation

of the � transport equation is due to Schiestel [3]. Among the successes of the derivation is a rather good

value C�1 = 1:5 and the demonstration that necessarily, C�2 > C�1.

It is well-known that the derivation of the � equation in rotating turbulence encounters additional

di�culties because rotation does not appear explicitly in the exact transport equation for the dissipation

rate. Instead, the e�ect of rotation is indirect, entering only through quantities like the turbulent time-

scale. In the present work, the � transport equation is treated by combining Schiestel's arguments with the

phenomenology for rotating turbulence of Zhou [4]. The most direct generalization of the argument of [3]

leads to a rotation-sensitized � equation with the same form as the standard � equation, but with an increased

value of C�2; a model of this type was proposed by Okamoto [5]. A simple modi�cation of the argument of

[3] yields instead a model of the form �rst proposed by Bardina et al [6]. The implications of these models

for decaying rotating turbulence are discussed.

2. Review of Schiestel's derivation. We begin with a split-spectrum model of high Reynolds number

turbulence,

E(�) =

(
C�2 if � < �0

CK�
2=3��5=3 if � > �0

(2.1)

In Eq. (2.1), �0 is the inverse integral scale of turbulence which marks the transition between the inertial

range and the large scales. Eq. (2.1) is a special case of the models introduced in [3] in connection with

multiple-scale turbulence models. This is no more than a schematic model of the actual energy spectrum;

however, as stressed in [3] and [7], to derive a two-equation model, it is essential that the spectrum be
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parametrized in some simple way. Use of a more complex model like the von K�arm�an spectrum would lead

to essentially the same results.

Denote the energy in the inertial range by

k =
3

2
CK�

2=3�
�2=3
0(2.2)

and the energy in the large scales by

k0 =
1

3
C�30(2.3)

Assume that the spectral descriptors in Eq. (2.1) are functions of time: � = �(t) and �0 = �0(t). It follows

from Eq. (2.2) that

_k = CK(�
�1=3�

�2=3
0 _�� �2=3�

�5=3
0 _�0)(2.4)

This equation does not lead to the desired � equation directly, because it contains the new unknown _�0.

To solve this problem, we postulate

_�0 = ��
�

E(�0)
(2.5)

based on a very similar proposal in [3]. In view of Eq. (2.1), Eq. (2.5) is equivalent to

_�0=�0 = �
3

2
��=k(2.6)

Then Eqs. (2.4){(2.6) give

_k =
2

3

k

�
_�� ��(2.7)

which can be re-arranged as

_� =
3

2

�

k
P � 3

2
(1 + �)

�2

k
(2.8)

with a rather good value for C�1 and a value for C�2 which depends on the choice of �. This result is

essentially Eq. (27) of [3].

Following Reynolds [8], the constant � can be �xed by appealing to the behavior of the large scales of

motion during decay. Di�erentiation of Eq. (2.3) gives

_k0
k0

= 3
_�0
�0

(2.9)

and di�erentiation of Eq. (2.2) gives

_k

k
=

2

3

_�

�
� 2

3

_�0
�0

(2.10)

Assuming that decay is self-similar, so that

_k

k
=

_k0
k0

(2.11)

Eqs. (2.9){(2.11) lead as usual to

_�

�
= �11

6

�

k
(2.12)
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corresponding, in Eq. (2.8), to � = 2=9.

It would seem that this argument solves the problem of deriving the homogeneous � transport equation,

since it gives the values C�1 = 3=2 and C�2 = 11=6. But one can object that the assumption Eq. (2.6) is

another way of stating the �nal result: this equation states that the integral scale ��10 satis�es a transport

equation in which the production term is absent. Indeed, writing

d

dt

k3=2

�
=

3

2

k1=2

�
_k � k3=2

�2
_�(2.13)

and substituting

_k = P � �

_� =
�

k
[C�1P � C�2�](2.14)

leads to

d

dt

k3=2

�
= (

3

2
� C�1)

k1=2

�
P + (C�2 �

3

2
)k1=2(2.15)

which shows that the absence of a production term in the length-scale transport equation is equivalent to

C�1 = 3=2.

The injection of energy at large scales can certainly cause the integral scale to increase; at the same time,

turbulence production might be expected to it to decrease through the enhancement of small scales. Eq.

(2.5) states the dominance of the �rst process over the second. Although the validity of this approximation

is uncertain, the success of the argument is undeniable, and it seems reasonable to ask what conclusions will

result if the same argument is applied to another problem.

3. Rotating turbulence. To derive an � equation for rotating turbulence, we will combine the argu-

ments of the previous section with Zhou's phenomenological model of rotating turbulence [4]. Brie
y, this

model postulates that strong rotation replaces the nonlinear time scale k=� by the inverse rotation rate 
�1;

closure theories lead to

� � �4TE(�)2(3.1)

where by hypothesis, T / 
�1, hence

E(�) = C

K

p
�
��2(3.2)

For notational simplicity, 
 will denote twice the absolute value of the rotation rate throughout.

Adding a model for the large scales, we obtain the analog of the split-spectrum model of Eq. (2.1) for

rotating turbulence,

E(�) =

(
C�2 if � < �0

C

K

p

���2 if � > �0

(3.3)

Again, we have the energy of the large scales,

k0 =
1

3
C�30(3.4)

and the inertial range energy

k = C

K

p

���10(3.5)
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Note that the de�nition of the integral scale implied by Eq. (3.5) di�ers from the non-rotating result Eq.

(2.2).

Following Schiestel, we di�erentiate Eq. (3.5) to obtain

_k

k
=

1

2

_�

�
� _�0

�0
(3.6)

As before, we must specify an equation for the inverse integral scale �0 in order to complete the model.

The simplest possibility is to retain Eq. (2.5). In this case, substitution of the rotation-modi�ed spectrum

Eq. (3.2) again leads to Eq. (2.6), but with a new constant of proportionality,

_�0=�0 = �
�=k(3.7)

Following the previous steps, we �nd instead of Eq. (2.8)

_� = 2
�

k
P � (2 + 2
)

�2

k
(3.8)

with the de�nite prediction that C�1 = 2 and C�2 > 2.

The constant 
 can be evaluated by assuming that the constant � in Eq. (2.5) is independent of

rotation. Tentatively accepting the non-rotating result � = 2=9 suggested earlier, Eq. (2.5) with the

rotation-dependent energy spectrum Eq. (3.2) leads to 
 = 2=9 and to the value C�2 = 22=9. In decaying

rotating turbulence, Eq. (3.8) predicts power-law decay in time, but with a smaller exponent than non-

rotating turbulence: indeed, following [8], we have

k(t) � t�1=(C�2
�1)(3.9)

and the increase in C�2 due to rotation from 11/6 to 22/9 implies a reduction in the decay rate.

The model of rotating decaying turbulence implied by Eq. (3.8) has been advocated, for example in

[5], and more recently in [9]. The value C�2 = 22=9 in rotating turbulence can be compared to the values

C�2 � 2:8 recommended in [5] and C�2 = 8=3 suggested in [9].

However, the available data is also consistent with the conclusion that in rotating turbulence, energy

transfer is suppressed completely, and energy becomes trapped in the largest scales of motion, where it

undergoes purely viscous decay. This picture, which is inconsistent with any kind of power-law decay, is

advocated for example by [10] and [11]. Which description of decaying rotating turbulence is correct remains

controversial; for now, we would like to explore some models which are consistent with the second viewpoint.

The derivation of Eq. (3.2) assumes that the time-scale in strongly rotating turbulence is the inverse

rotation rate. This idea suggests replacing Eq. (2.6) by

_�0
�0

= �
0
(3.10)

in the strong rotation limit. Eqs. (3.6) and (3.10) yield the � equation in the form

_� = 2
�

k
(P � �)� 
0
�(3.11)

The rotation dependence found in Eq. (3.11) coincides with that of the well-known Bardina model [6]; we

argued previously [1] for the strong rotation limit of this model on the basis of simpli�ed closure arguments.

Integration of the Bardina model for decaying turbulence in the strong rotation limit gives the results that

� decays exponentially in time, but that the kinetic energy approaches a constant; if viscosity is included in

the analysis, then the kinetic energy undergoes purely viscous decay.
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Although these conclusions are consistent with numerical and experimental observations [10], the as-

sumption Eq. (3.10) underlying the present derivation has the consequence that the integral scale grows

exponentially. This was cited in [9] as evidence against the Bardina model itself, although [11] argued that

quite di�erent two-point behavior can be consistent with the same single-point model.

The di�culty is not so much with Schiestel's formalism, but with applying Eq. (3.10), an isotropic

result, to rotating turbulence. In rotating turbulence, the Taylor-Proudman theorem forces the large scales

of motion to be nearly two-dimensional. Consequently, the integral scales parallel and perpendicular to the

rotation axis are unequal [10].

It is rather di�cult to capture this e�ect in any isotropic model. But suppose that we combine Eqs.

(3.6) and (2.9) to give

_k

k
=

1

2

_�

�
� 1

3

_k0
k0

(3.12)

and simply postulate the large rotation limit of Eq. (3.11) for decaying turbulence

_�

�
= �
0
(3.13)

Then we obtain

_k

k
= �1

2

0
� 1

3

_k0
k0

(3.14)

or equivalently,

kk
1=3
0 = k(0)k0(0)

1=3e�

0
t=2(3.15)

instead of the self-similarity postulate Eq. (2.11) for non-rotating turbulence. Unlike the argument leading to

Eq. (3.8), which like the derivation for isotropic turbulence assumes that the energy decay of the large scales

and the inertial range scales is linked by self-similarity, the present derivation instead allows the dynamics

of the large scales and the inertial range scales to be di�erent.

The problem of decaying rotating turbulence is de�ned by the energy equation together with Eq. (3.13)

and either Eq. (3.14) or Eq. (3.15). Numerical integration will be required to solve these equations in

general, but it is evident that these equations are consistent with the limits

� = 0

k = 0(3.16)

while

k0 = const:

�0 = const:(3.17)

Thus, the kinetic energy in the inertial range vanishes, the energy transfer vanishes, but the kinetic energy

in the large scales and the integral scale both approach constants in the absence of viscosity.

Let us summarize the di�erences between the two dynamic descriptions of rotating decay. Power-law

decay, but with a reduced exponent, follows if the decay of both the large-scale energy and the inertial range

energy is linked through the self-similarity assumption Eq. (2.11). The alternative description, which leads

instead to Eqs. (3.16) and (3.17) allows the large-scale and inertial range energies to evolve independently.

The argument also implies that in the long-time limit, viscous dissipation and energy transfer are unequal:

energy transfer can vanish, but viscous dissipation is always nonzero.
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4. Conclusions. Schiestel's derivation of the � transport equation has been generalized to rotating

turbulence. By assuming that the basic scale relationship Eq. (2.5) applies to both non-rotating and rotating

turbulence, we are led to the � equation in the form Eq. (3.8). This equation implies algebraic decay in

time of decaying rotating turbulence with a smaller decay rate than non-rotating turbulence. Replacing

Eq. (3.8) with the rotation-dependent hypothesis Eq. (3.10) leads essentially to the Bardina model, which

implies a completely di�erent description of rotating decay: the nonlinear energy transfer vanishes and

in the absence of viscous e�ects, energy approaches a constant. By ignoring the two-dimensionality and

rotation-independence of the large scales, this argument leads to an incorrect description of the integral

scale in decaying rotating turbulence. By modifying Schiestel's argument, the Bardina model is shown to be

consistent with saturation of the integral scale.
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